schrodinger.application.desmond.measurement module¶
A class for simple arithmetic with uncertainty.
Copyright Schrodinger, LLC. All rights reserved.
-
class
schrodinger.application.desmond.measurement.Measurement(value, uncertainty=nan)¶ Bases:
objectBasic method for uncertainty propagation: Say we have a few measurements: x1, x2, x3, …, and they each has a uncertainty: d1, d2, d3, …, respectively. Now we have a function: f( x1, x2, x3, … ), we want to get the value of this function with given measurements x1, x2, x3, … and also the uncertainty of the result of f. A way to do this is the following:
We need to get the contribution to the uncertainty of f result due to each measurement: fd1, fd2, fd3, … This can be given by the following equations:
fd1 = df / dx1 * d1 fd2 = df / dx2 * d2 fd3 = df / dx3 * d3 …
where `df / dx1’ is a partial derivative of f with respect to x1.
- With fd1, fd2, fd3, …, we can get the uncertainty of f using this equation:
fd = math.sqrt( fd1 * fd1 + fd2 * fd2 + fd3 * fd3 + … )
-
__init__(value, uncertainty=nan)¶
-
__repr__()¶
-
__eq__(rhs)¶ Return self==value.
-
__str__()¶
-
__float__()¶
-
__int__()¶
-
__tuple__()¶
-
__add__(rhs)¶
-
__radd__(lhs)¶
-
__sub__(rhs)¶
-
__rsub__(lhs)¶
-
__neg__()¶
-
__pos__()¶
-
__abs__()¶
-
__mul__(rhs)¶
-
__rmul__(lhs)¶
-
__div__(rhs)¶
-
__rdiv__(lhs)¶
-
__truediv__(rhs)¶
-
to_string(num_digits)¶ Convert
Measurementto string with givennum_digitsdecimal places
-
classmethod
from_string(s)¶ Convert string (e.g: “5.0+-0.3”) to
Measurement
-
__class__¶ alias of
builtins.type
-
__delattr__¶ Implement delattr(self, name).
-
__dict__= mappingproxy({'__module__': 'schrodinger.application.desmond.measurement', '__doc__': "\n Basic method for uncertainty propagation:\n Say we have a few measurements: x1, x2, x3, ..., and they each has a uncertainty: d1, d2, d3, ..., respectively.\n Now we have a function: f( x1, x2, x3, ... ), we want to get the value of this function with given measurements x1, x2, x3,\n ... and also the uncertainty of the result of f.\n A way to do this is the following:\n 1. We need to get the contribution to the uncertainty of f result due to each measurement: fd1, fd2, fd3, ...\n This can be given by the following equations:\n fd1 = df / dx1 * d1\n fd2 = df / dx2 * d2\n fd3 = df / dx3 * d3\n ...\n where `df / dx1' is a partial derivative of f with respect to x1.\n 2. With fd1, fd2, fd3, ..., we can get the uncertainty of f using this equation:\n fd = math.sqrt( fd1 * fd1 + fd2 * fd2 + fd3 * fd3 + ... )\n ", '__init__': <function Measurement.__init__>, '__repr__': <function Measurement.__repr__>, '__eq__': <function Measurement.__eq__>, '__str__': <function Measurement.__str__>, '__float__': <function Measurement.__float__>, '__int__': <function Measurement.__int__>, '__tuple__': <function Measurement.__tuple__>, '__add__': <function Measurement.__add__>, '__radd__': <function Measurement.__radd__>, '__sub__': <function Measurement.__sub__>, '__rsub__': <function Measurement.__rsub__>, '__neg__': <function Measurement.__neg__>, '__pos__': <function Measurement.__pos__>, '__abs__': <function Measurement.__abs__>, '__mul__': <function Measurement.__mul__>, '__rmul__': <function Measurement.__rmul__>, '__div__': <function Measurement.__div__>, '__rdiv__': <function Measurement.__rdiv__>, '__truediv__': <function Measurement.__truediv__>, 'to_string': <function Measurement.to_string>, 'from_string': <classmethod object>, '__dict__': <attribute '__dict__' of 'Measurement' objects>, '__weakref__': <attribute '__weakref__' of 'Measurement' objects>, '__hash__': None})¶
-
__dir__() → list¶ default dir() implementation
-
__format__()¶ default object formatter
-
__ge__¶ Return self>=value.
-
__getattribute__¶ Return getattr(self, name).
-
__gt__¶ Return self>value.
-
__hash__= None¶
-
__init_subclass__()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__¶ Return self<=value.
-
__lt__¶ Return self<value.
-
__module__= 'schrodinger.application.desmond.measurement'¶
-
__ne__¶ Return self!=value.
-
__new__()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__()¶ helper for pickle
-
__reduce_ex__()¶ helper for pickle
-
__setattr__¶ Implement setattr(self, name, value).
-
__sizeof__() → int¶ size of object in memory, in bytes
-
__subclasshook__()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
__weakref__¶ list of weak references to the object (if defined)
-
schrodinger.application.desmond.measurement.string2measurement(s)¶ Convert string (e.g: “5.0+-0.3”) to
MeasurementThis method is deprecated in favor of Measurement.from_string