schrodinger.application.glide.ensemble_selection module¶
Classes for representing receptor ensembles and for choosing the best ensembles of a specified size from a cross-docking experiment.
Example:
from schrodinger.application.glide import ensemble_selection es = ensemble_selection.EnsembleSelection(fname=’xdock.csv’,
exp_dg_fname=’exp.txt’)# get the 10 best 3-member ensembles
print “Best by count” for ens in es.best_ensembles_by_count(3, 10):
print “%dt%.3ft%s” % (ens.count, ens.rmsd, ens)print “nBest by rmsd” for ens in es.best_ensembles_by_rmsd(3, 10):
print “%dt%.3ft%s” % (ens.count, ens.rmsd, ens)
For more details, see the documentation for the EnsembleSelection class.
-
schrodinger.application.glide.ensemble_selection.lignum_reader(reader, lignum_prop='i_i_glide_lignum', ligoffset=0)¶ A generator that returns the structures in fname that have lignum_prop > ligoffset. ‘reader’ is an iterator that generates Structure objects (e.g., a StructureReader). IMPORTANT NOTES: 1) This requires that the structures are sorted by lignum (as in a raw
file from Glide), and that each lignum appears once at most. An exception will be raised otherwise.- If a ligand is missing in the file, the generator returns None for that ligand. For example, if lig2 is not in the file, we get (lig1, None, lig3…)
-
class
schrodinger.application.glide.ensemble_selection.Ensemble_Priority_Queue(nslots)¶ Bases:
objectClass implementing a priority queue for the purpose of maintaining lists of ensembles in memory during ensemble selection
-
__init__(nslots)¶ Initialize self. See help(type(self)) for accurate signature.
-
add(ensemble_tuple)¶
-
pop()¶
-
best_scoring_element()¶
-
worst_saved_score()¶
-
pushpop(ensemble_tuple)¶
-
length¶
-
ensembles¶
-
__class__¶ alias of
builtins.type
-
__delattr__¶ Implement delattr(self, name).
-
__dict__= mappingproxy({'__module__': 'schrodinger.application.glide.ensemble_selection', '__doc__': ' Class implementing a priority queue for the purpose\n of maintaining lists of ensembles in memory during\n ensemble selection ', '__init__': <function Ensemble_Priority_Queue.__init__>, 'add': <function Ensemble_Priority_Queue.add>, 'pop': <function Ensemble_Priority_Queue.pop>, 'best_scoring_element': <function Ensemble_Priority_Queue.best_scoring_element>, 'worst_saved_score': <function Ensemble_Priority_Queue.worst_saved_score>, 'pushpop': <function Ensemble_Priority_Queue.pushpop>, 'length': <property object>, 'ensembles': <property object>, '__dict__': <attribute '__dict__' of 'Ensemble_Priority_Queue' objects>, '__weakref__': <attribute '__weakref__' of 'Ensemble_Priority_Queue' objects>})¶
-
__dir__() → list¶ default dir() implementation
-
__eq__¶ Return self==value.
-
__format__()¶ default object formatter
-
__ge__¶ Return self>=value.
-
__getattribute__¶ Return getattr(self, name).
-
__gt__¶ Return self>value.
-
__hash__¶ Return hash(self).
-
__init_subclass__()¶ This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
-
__le__¶ Return self<=value.
-
__lt__¶ Return self<value.
-
__module__= 'schrodinger.application.glide.ensemble_selection'¶
-
__ne__¶ Return self!=value.
-
__new__()¶ Create and return a new object. See help(type) for accurate signature.
-
__reduce__()¶ helper for pickle
-
__reduce_ex__()¶ helper for pickle
-
__repr__¶ Return repr(self).
-
__setattr__¶ Implement setattr(self, name, value).
-
__sizeof__() → int¶ size of object in memory, in bytes
-
__str__¶ Return str(self).
-
__subclasshook__()¶ Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
-
__weakref__¶ list of weak references to the object (if defined)
-