schrodinger.application.matsci.qexsd.qespresso.utils.mapping module

Useful classes for building mapping structures.

class schrodinger.application.matsci.qexsd.qespresso.utils.mapping.BiunivocalMap(*args, **kwargs)

Bases: collections.abc.MutableMapping

A dictionary that implements a bijective correspondence, namely with constraints of uniqueness both on keys that on values.

__init__(*args, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

__getitem__(key)
__setitem__(key, item)
__delitem__(key)
__iter__()
__len__()
__contains__(key)
__repr__()

Return repr(self).

copy()
classmethod fromkeys(iterable, value=None)
getkey(value, default=None)

If value is in dictionary’s values, return the key correspondent to the value, else return None.

Parameters:
  • value – Value to map
  • default – Default to return if the value is not in the map values
inverse()

Return a copy of the inverse dictionary.

__abstractmethods__ = frozenset()
__class__

alias of abc.ABCMeta

__delattr__

Implement delattr(self, name).

__dict__ = mappingproxy({'__module__': 'schrodinger.application.matsci.qexsd.qespresso.utils.mapping', '__doc__': '\n A dictionary that implements a bijective correspondence, namely with constraints\n of uniqueness both on keys that on values.\n ', '__init__': <function BiunivocalMap.__init__>, '__getitem__': <function BiunivocalMap.__getitem__>, '__setitem__': <function BiunivocalMap.__setitem__>, '__delitem__': <function BiunivocalMap.__delitem__>, '__iter__': <function BiunivocalMap.__iter__>, '__len__': <function BiunivocalMap.__len__>, '__contains__': <function BiunivocalMap.__contains__>, '__repr__': <function BiunivocalMap.__repr__>, 'copy': <function BiunivocalMap.copy>, 'fromkeys': <classmethod object>, 'getkey': <function BiunivocalMap.getkey>, 'inverse': <function BiunivocalMap.inverse>, '__dict__': <attribute '__dict__' of 'BiunivocalMap' objects>, '__weakref__': <attribute '__weakref__' of 'BiunivocalMap' objects>, '__abstractmethods__': frozenset(), '_abc_registry': <_weakrefset.WeakSet object>, '_abc_cache': <_weakrefset.WeakSet object>, '_abc_negative_cache': <_weakrefset.WeakSet object>, '_abc_negative_cache_version': 49})
__dir__() → list

default dir() implementation

__eq__(other)

Return self==value.

__format__()

default object formatter

__ge__

Return self>=value.

__getattribute__

Return getattr(self, name).

__gt__

Return self>value.

__hash__ = None
__init_subclass__()

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

__le__

Return self<=value.

__lt__

Return self<value.

__module__ = 'schrodinger.application.matsci.qexsd.qespresso.utils.mapping'
__ne__

Return self!=value.

__new__()

Create and return a new object. See help(type) for accurate signature.

__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__reversed__ = None
__setattr__

Implement setattr(self, name, value).

__sizeof__() → int

size of object in memory, in bytes

__slots__ = ()
__str__

Return str(self).

classmethod __subclasshook__(C)

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

__weakref__

list of weak references to the object (if defined)

clear() → None. Remove all items from D.
get(k[, d]) → D[k] if k in D, else d. d defaults to None.
items() → a set-like object providing a view on D's items
keys() → a set-like object providing a view on D's keys
pop(k[, d]) → v, remove specified key and return the corresponding value.

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem() → (k, v), remove and return some (key, value) pair

as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D
update([E, ]**F) → None. Update D from mapping/iterable E and F.

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values() → an object providing a view on D's values