"""
Module to generate powder diffraction.
Copyright Schrodinger, LLC. All rights reserved.
"""
import os
import json
from math import sin, cos, asin, pi, degrees, radians
import numpy as np
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
from pymatgen.analysis.diffraction import xrd
from pymatgen.analysis.diffraction.core import (
DiffractionPattern, AbstractDiffractionPatternCalculator,
get_unique_families)
# This is from 2019.6.5 (LEGAL-413)
# the only change here is the addition of the "compute_intensities" argument
# XRD wavelengths in angstroms
WAVELENGTHS = xrd.WAVELENGTHS
ATOMIC_SCATTERING_PARAMS = xrd.ATOMIC_SCATTERING_PARAMS
[docs]class XRDCalculator(xrd.XRDCalculator):
"""
See parent documentation. The main change is in get_pattern, to allow
atom-less structure.
"""
[docs] def get_pattern(self,
structure,
scaled=True,
two_theta_range=(0, 90),
compute_intensities=True):
"""
Calculates the diffraction pattern for a structure.
Args:
structure (Structure): Input structure
scaled (bool): Whether to return scaled intensities. The maximum
peak is set to a value of 100. Defaults to True. Use False if
you need the absolute values to combine XRD plots.
two_theta_range ([float of length 2]): Tuple for range of
two_thetas to calculate in degrees. Defaults to (0, 90). Set to
None if you want all diffracted beams within the limiting
sphere of radius 2 / wavelength.
compute_intensities (bool): If True, compute peaks intensities
(requires atoms in the structure), otherwise only peak locations
Returns:
(XRDPattern)
"""
if compute_intensities:
# Ensure that structure has sites
assert len(structure)
if self.symprec:
finder = SpacegroupAnalyzer(structure, symprec=self.symprec)
structure = finder.get_refined_structure()
wavelength = self.wavelength
latt = structure.lattice
is_hex = latt.is_hexagonal()
# Obtained from Bragg condition. Note that reciprocal lattice
# vector length is 1 / d_hkl.
min_r, max_r = (0, 2 / wavelength) if two_theta_range is None else \
[2 * sin(radians(t / 2)) / wavelength for t in two_theta_range]
# Obtain crystallographic reciprocal lattice points within range
recip_latt = latt.reciprocal_lattice_crystallographic
recip_pts = recip_latt.get_points_in_sphere([[0, 0, 0]], [0, 0, 0],
max_r)
if min_r:
recip_pts = [pt for pt in recip_pts if pt[1] >= min_r]
# Create a flattened array of zs, coeffs, fcoords and occus. This is
# used to perform vectorized computation of atomic scattering factors
# later. Note that these are not necessarily the same size as the
# structure as each partially occupied specie occupies its own
# position in the flattened array.
zs = []
coeffs = []
fcoords = []
occus = []
dwfactors = []
for site in structure:
for sp, occu in site.species.items():
zs.append(sp.Z)
try:
c = ATOMIC_SCATTERING_PARAMS[sp.symbol]
except KeyError:
raise ValueError("Unable to calculate XRD pattern as "
"there is no scattering coefficients for"
" %s." % sp.symbol)
coeffs.append(c)
dwfactors.append(self.debye_waller_factors.get(sp.symbol, 0))
fcoords.append(site.frac_coords)
occus.append(occu)
zs = np.array(zs)
coeffs = np.array(coeffs)
fcoords = np.array(fcoords)
occus = np.array(occus)
dwfactors = np.array(dwfactors)
peaks = {}
two_thetas = []
for hkl, g_hkl, ind, _ in sorted(
recip_pts, key=lambda i: (i[1], -i[0][0], -i[0][1], -i[0][2])):
# Force miller indices to be integers.
hkl = [int(round(i)) for i in hkl]
if g_hkl != 0:
d_hkl = 1 / g_hkl
# Bragg condition
theta = asin(wavelength * g_hkl / 2)
if compute_intensities:
# s = sin(theta) / wavelength = 1 / 2d = |ghkl| / 2 (d =
# 1/|ghkl|)
s = g_hkl / 2
# Store s^2 since we are using it a few times.
s2 = s**2
# Vectorized computation of g.r for all fractional coords and
# hkl.
g_dot_r = np.dot(fcoords, np.transpose([hkl])).T[0]
# Highly vectorized computation of atomic scattering factors.
# Equivalent non-vectorized code is::
#
# for site in structure:
# el = site.specie
# coeff = ATOMIC_SCATTERING_PARAMS[el.symbol]
# fs = el.Z - 41.78214 * s2 * sum(
# [d[0] * exp(-d[1] * s2) for d in coeff])
fs = zs - 41.78214 * s2 * np.sum(
coeffs[:, :, 0] * np.exp(-coeffs[:, :, 1] * s2), axis=1)
dw_correction = np.exp(-dwfactors * s2)
# Structure factor = sum of atomic scattering factors (with
# position factor exp(2j * pi * g.r and occupancies).
# Vectorized computation.
f_hkl = np.sum(
fs * occus * np.exp(2j * pi * g_dot_r) * dw_correction)
# Lorentz polarization correction for hkl
lorentz_factor = (1 + cos(2 * theta) ** 2) / \
(sin(theta) ** 2 * cos(theta))
# Intensity for hkl is modulus square of structure factor.
i_hkl = (f_hkl * f_hkl.conjugate()).real
else:
i_hkl = 1.0
lorentz_factor = 1.0
two_theta = degrees(2 * theta)
if is_hex:
# Use Miller-Bravais indices for hexagonal lattices.
hkl = (hkl[0], hkl[1], -hkl[0] - hkl[1], hkl[2])
# Deal with floating point precision issues.
ind = np.where(
np.abs(np.subtract(two_thetas, two_theta)) <
AbstractDiffractionPatternCalculator.TWO_THETA_TOL)
if len(ind[0]) > 0:
peaks[two_thetas[ind[0][0]]][0] += i_hkl * lorentz_factor
peaks[two_thetas[ind[0][0]]][1].append(tuple(hkl))
else:
peaks[two_theta] = [
i_hkl * lorentz_factor, [tuple(hkl)], d_hkl
]
two_thetas.append(two_theta)
# Scale intensities so that the max intensity is 100.
max_intensity = max([v[0] for v in peaks.values()])
x = []
y = []
hkls = []
d_hkls = []
for k in sorted(peaks.keys()):
v = peaks[k]
fam = get_unique_families(v[1])
if v[0] / max_intensity * 100 > AbstractDiffractionPatternCalculator.SCALED_INTENSITY_TOL:
x.append(k)
y.append(v[0])
hkls.append([{
"hkl": hkl,
"multiplicity": mult
} for hkl, mult in fam.items()])
d_hkls.append(v[2])
xrd = DiffractionPattern(x, y, hkls, d_hkls)
if scaled:
xrd.normalize(mode="max", value=100)
return xrd