schrodinger.trajectory.prody.mode module¶
This module defines classes for handling mode data.
-
class
schrodinger.trajectory.prody.mode.VectorBase[source]¶ Bases:
objectA base class for
ModeandVector.This base class defines some shared methods, such as scalar multiplication or addition of mode instances.
Defined operations are:
Absolute value (abs(mode)) returns mode length
Additive inverse (-mode)
Mode addition (mode1 + mode2)
Mode subtraction (mode1 - mode2)
Scalar multiplication (x*mode or mode*x)
Division by a scalar (mode/x)
Dot product (mode1*mode2)
Power (mode**x)
-
class
schrodinger.trajectory.prody.mode.Mode(model, index)[source]¶ Bases:
schrodinger.trajectory.prody.mode.VectorBaseA class to provide access to and operations on mode data.
-
__init__(model, index)[source]¶ Initialize mode object as part of an NMA model.
- Parameters
model (
NMA,GNM, orPCA) – a normal mode analysis instanceindex (int) – index of the mode
-
getEigvec()¶ Return a copy of the normal mode array (eigenvector).
-
getEigval()[source]¶ Return normal mode eigenvalue. For
PCAandEDAmodels built using coordinate data in Å, unit of eigenvalues is |A2|. ForANMandGNM, on the other hand, eigenvalues are in arbitrary or relative units but they correlate with stiffness of the motion along associated eigenvector.
-
getVariance()[source]¶ Return variance along the mode. For
PCAandEDAmodels built using coordinate data in Å, unit of variance is |A2|. ForANMandGNM, on the other hand, variance is the inverse of the eigenvalue, so it has arbitrary or relative units.
-
getArrayNx3()¶ Return a copy of array with shape (N, 3).
-
numModes()¶ Return 1.
-
-
class
schrodinger.trajectory.prody.mode.Vector(array, title='Unknown', is3d=True)[source]¶ Bases:
schrodinger.trajectory.prody.mode.VectorBaseA class to provide operations on a modified mode array. This class holds only mode array (i.e. eigenvector) data, and has no associations with an NMA instance. Scalar multiplication of
Modeinstance or addition of twoModeinstances results in aVectorinstance.-
__init__(array, title='Unknown', is3d=True)[source]¶ Instantiate with a name, an array, and a 3d flag.
-
is3d()[source]¶ Return True if vector instance describes a 3-dimensional property, such as a deformation for a set of atoms.
-
numAtoms()[source]¶ Return number of atoms. For a 3-dimensional vector, returns length of the vector divided by 3.
-
getArrayNx3()¶ Return a copy of array with shape (N, 3).
-
numModes()¶ Return 1.
-