Classes and functions for the genetic optimization module.
Copyright Schrodinger, LLC. All rights reserved.
|
set_title_to_stoichiometry(astructure,
toappend=None,
separation=' . ' )
Set the structure title to be the stoichiometry of the structure. |
|
|
|
|
int
|
|
schrodinger.structure.Structure
|
combine_two_structures(astructure,
bstructure,
offset=10.0)
Combine two structure objects into a single structure object using
somewhat arbitrary placement. |
|
|
tuple
|
bond_crossover(genome,
**args)
Perform a crossover operation by swapping molecular fragments at two
randomly choosen bonds, i.e. |
|
|
dict
|
get_element_mutator_dict(astructure)
Return a dictionary where the keys contain the indicies of the
mutatable atoms and the values contain those elements that the keyed
atom may be mutated to. |
|
|
list
|
|
schrodinger.structure.Structure
|
get_child_like_parent(parent_st,
children_sts,
definition)
Return the child structure that is most like the provided parent. |
|
|
int
|
elemental_mutator(genome,
**args)
Perform a random elemental mutation to an element in the same column
(as known as group) of the periodic table. |
|
|
int
|
fragment_mutator(genome,
**args)
Randomly mutate the genome by swapping a molecular fragement on one
side of a bond by a similar fragment from a library. |
|
|
int
|
isoelectronic_mutator(genome,
**args)
Perform a random isoelectronic mutation from the following sets of
series CH3X, NH2X, OHX, and FX, CH2XY, NHXY, OXY, and CHXYZ and NXYZ,
where X, Y, and Z are non-H-bonds. |
|
|
str
|
get_loggable_float(afloat,
num_decimal=' %.2f ' ,
field_width=10)
Return a float as a string with the specified format. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
first_property(ga_obj)
Terminate when the first property has been matched. |
|
|
bool
|
all_properties(ga_obj)
Terminate when all properties have been matched. |
|
|
bool
|
unproductive(ga_obj)
Terminate if the maximum number of unproductive generations has been
reached. |
|
|
|
print_bad_jobs(all_bad_jobs,
logger,
bad_type=' skip ' )
Log bad jobs, i.e. |
|
|
str
|
|
str
|
|
float
|
|
float
|
base_evaluator(genome)
This is the base evaulator used to wrap all other evaluators. |
|
|
launcher.Launcher
|
|
list
|
|
bool
|
|
dict
|
get_element_histogram(astructure)
Return a dictionary where keys are elements and values are the
numbers of atoms of a given element. |
|
|
str
|
remove_basename_ext(stoich_ext)
Remove the basename extension from the given string and return the
remainder which is the stoichiometry. |
|
|
|
__doc__ = ...
|
|
_version = ' $Revision 0.0 $ '
|
|
PYEVOLVE_LOG_EXT = ' -pyevolve.log '
|
|
IN_MAE_EXT = ' -in.mae '
|
|
OUT_MAE_EXT = ' -out.mae '
|
|
BOND_CROSSOVER = ' bond '
hash(x)
|
|
CROSSOVER_CHOICES = [ ' bond ' ]
|
|
DEFAULT_CROSSOVERS = [ ' bond ' ]
|
|
ELEMENTAL_MUTATOR = ' elemental '
|
|
FRAGMENT_MUTATOR = ' fragment '
|
|
ISOELECTRONIC_MUTATOR = ' isoelectronic '
|
|
MUTATOR_CHOICES = [ ' elemental ' , ' fragment ' , ' isoelectronic ' ]
|
|
DEFAULT_MUTATORS = [ ' fragment ' , ' isoelectronic ' ]
|
|
GENERATIONS = 10
|
|
POPULATION = 8
|
|
CROSSOVER_RATE = 90.0
|
|
MUTATION_RATE = 90.0
|
|
RANK_SELECTION = ' rank '
|
|
ROULETTE_WHEEL_SELECTION = ' roulette_wheel '
|
|
TOURNAMENT_SELECTION = ' tournament '
|
|
TOURNAMENT_SELECTION_WITH_ROULETTE = ' tournament_with_roulette '
|
|
UNIFORM_SELECTION = ' uniform '
|
|
SELECTION_DICT = {RANK_SELECTION: Selectors.GRankSelector, ROU...
|
|
SELECTION_CHOICES = [ ' rank ' , ' roulette_wheel ' , ' tournament ' , ' ...
|
|
DEFAULT_SELECTION = ' roulette_wheel '
|
|
TOURNAMENT_SIZE = 2
|
|
UNPRODUCTIVE_TERM = ' unproductive '
|
|
FIRST_PROPERTY_TERM = ' first_property '
|
|
ALL_PROPERTIES_TERM = ' all_properties '
|
|
MAX_GENERATIONS_TERM = ' max_generations '
|
|
TERM_CHOICES = [ ' unproductive ' , ' first_property ' , ' all_propert ...
|
|
DEFAULT_TERMS = [ ' unproductive ' , ' all_properties ' ]
|
|
NUM_UNPRODUCTIVE = 6
|
|
LINEAR_SCALING = ' linear '
|
|
POWER_LAW_SCALING = ' power_law '
|
|
EXPONENTIAL_SCALING = ' exponential '
|
|
SATURATED_SCALING = ' saturated '
|
|
SIGMA_TRUNCATION_SCALING = ' sigma_truncation '
|
|
BOLTZMANN_SCALING = ' boltzmann '
|
|
SCALING_DICT = {LINEAR_SCALING: Scaling.LinearScaling, POWER_L...
|
|
SCALING_CHOICES = [ ' linear ' , ' power_law ' , ' exponential ' , ' satu ...
|
|
DEFAULT_SCALING = ' sigma_truncation '
|
|
ALLOWS_NEGATIVE_SCORES = [ ' exponential ' , ' saturated ' , ' sigma_t ...
|
|
ELITISM = 1
|
|
RANDOM_SEED = None
hash(x)
|
|
RANDOM_INT_BOUND = 1000000
|
|
NO_MINIMIZE = False
hash(x)
|
|
INDIVIDUAL_KEY = ' i_matsci_individual_index '
|
|
GENERATION_KEY = ' i_matsci_generation '
|
|
STRUCTURE_SCORE_KEY = ' r_matsci_structure_score '
|
|
RAW_SCORE_KEY = ' r_matsci_raw_score '
|
|
FIT_SCORE_KEY = ' r_matsci_fit_score '
|
|
SKIP_KEY = ' b_matsci_skipped '
|
|
FAILURE_KEY = ' b_matsci_failed '
|
|
LOCALHOST = ' localhost '
hash(x)
|
|
TPP_GA = 1
|
|
TPP_EVAL = 1
|
|
TPP_STR = ' -TPP '
|
|
DEFAULT_EVAL_KWARGS = { }
|
|
ORGANIC = ' organic '
|
|
N_HETEROCYCLES = ' N-heterocycles '
|
|
O_HETEROCYCLES = ' O-heterocycles '
|
|
S_HETEROCYCLES = ' S-heterocycles '
|
|
MIXED_HETEROCYCLES = ' Mixed-heterocycles '
|
|
COMBIGLIDE_DEFAULT = ' combiglide_default '
|
|
OPTOELECTRONICS = ' optoelectronics '
|
|
ALL = ' all '
|
|
MMSHARE_MAIN_DATA = u' /nfs/builds/objects/OB/2015-1/Linux-x86_ ...
|
|
FRAGMENT_LIBS = { ' Mixed-heterocycles ' : u' /nfs/builds/objects/O ...
|
|
FRAGMENT_LIBS_DEFAULT = [ ' optoelectronics ' ]
|
|
ENTRY_NAME_KEY = ' s_m_entry_name '
|
|
GROW_NAME_KEY = ' s_m_grow_name '
|
|
PDB_ATOM_NAME_KEY = ' s_m_pdb_atom_name '
|
|
PDB_RES_NAME_KEY = ' s_m_pdb_residue_name '
|
|
CROSSOVER_PARENTS_KEY = ' s_matsci_crossover_parents '
|
|
CROSSOVER_APPLIED_KEY = ' s_matsci_crossover_applied '
|
|
MUTATION_PARENT_KEY = ' s_matsci_mutation_parent '
|
|
MUTATION_APPLIED_KEY = ' s_matsci_mutation_applied '
|
|
EVALUATOR_JOBS_DIR = ' evaluator_jobs '
|
|
GENER_SUBDIR = ' generation_ '
|
|
NUM_DECIMAL = ' %.2f '
|
|
FIELD_WIDTH = 10
|
|
INFINITE_SCORE = 1000000000
|
|
BAD_SCORE = -10000000
|
|
FRAG_MAX_UNPRODUCTIVE = 3
hash(x)
|
|
RXN_KEY = ' s_matsci_RXN_representation '
|
|
SMALL_CHILD_FREQ = 0.75
|
|
SIMILAR_STDEV_CHILDREN_FREQ = 0.75
|
|
FILE_BASE_NAME = ' genopt '
|
|
NO_OPEN_SHELL = False
hash(x)
|
|
TERM_THRESH = 0.0001
|
|
SMARTS_PATTERN_SEPARATOR = ' _ '
|
|
SMARTS_PROP = ' smarts '
|
|
MOL_WEIGHT_PROP = ' molecular_weight '
|
|
NATOMS_PROP = ' natoms '
|
|
NELEMENTS_PROP = ' nelements '
|
|
SMARTS_KEY = ' i_matsci_SMARTS_property_%s '
|
|
MOL_WEIGHT_KEY = ' r_m_Molecular_weight '
|
|
NATOMS_KEY = ' i_m_Number_of_atoms '
|
|
NELEMENTS_KEY = ' i_m_Number_of_elements '
|
|
NONE = ' none '
|
|
ATYPICAL = ' atypical '
|
|
ATYPICAL_PATTERNS = OrderedDict([('three-atom or longer chains...
|
|
ATYPICAL_PROPS = [ ' name=natoms target=200 comparator=lt weight ...
|
|
PENALIZE_PROTOCOLS = OrderedDict([('atypical', (OrderedDict([(...
|
|
PENALIZE_CHOICES = [ ' none ' , ' atypical ' ]
|
|
PENALIZE_DEFAULT = [ ' atypical ' ]
|
|
STRUCTURE_SCORE_THRESHOLD = -50.0
|
|
EXTS_TO_RETURN = [ ' .spm ' ]
|
|
STOICH_BASE_EXT_SEP = ' . '
|
|
__package__ = ' schrodinger.application.matsci.genetic_optimiza ...
|