Manage a BFGS optimization.
|
|
__init__(self,
c1=0.0001,
c2=0.9,
amax=50.0,
amin=1e-08,
xtol=1e-14,
max_force=0.0005,
max_iterations=50,
eps=0.0001,
init_hess='identity',
verbose=False,
logger=None)
Create an instance. |
|
|
|
tuple
|
line_search_wolfe12(self,
f,
fprime,
xk,
pk,
gfk=None,
old_fval=None,
old_old_fval=None)
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
suitable step length is not found, and raise an exception if a
suitable step length is not found. |
|
|
|
|
resetFiniteDiffCall(self)
Reset the finite difference call. |
|
|
|
numpy.array
|
getInitialInvHessian(self,
fun,
jac,
fun_0,
jac_0,
x_0)
Return an initial guess for the inverse Hessian. |
|
|
|
scipy.optimize.optimize.OptimizeResult
|
minimize(self,
fun,
x_0,
jac=None,
**kwargs)
Minimization of a function using the BFGS algorithm. |
|
|
|
Inherited from object:
__delattr__,
__format__,
__getattribute__,
__hash__,
__new__,
__reduce__,
__reduce_ex__,
__repr__,
__setattr__,
__sizeof__,
__str__,
__subclasshook__
|