Manage a BFGS optimization.
    |  | 
        
          | __init__(self,
        c1=0.0001,
        c2=0.9,
        amax=50.0,
        amin=1e-08,
        xtol=1e-14,
        max_force=0.0005,
        max_iterations=50,
        eps=0.0001,
        init_hess= 'identity',
        verbose=False,
        logger=None)Create an instance.
 |  |  | 
    | tuple | 
        
          | line_search_wolfe12(self,
        f,
        fprime,
        xk,
        pk,
        gfk=None,
        old_fval=None,
        old_old_fval=None) Same as line_search_wolfe1, but fall back to line_search_wolfe2 if 
      suitable step length is not found, and raise an exception if a 
      suitable step length is not found.
 |  |  | 
    |  | 
        
          | resetFiniteDiffCall(self) Reset the finite difference call.
 |  |  | 
    | numpy.array | 
        
          | getInitialInvHessian(self,
        fun,
        jac,
        fun_0,
        jac_0,
        x_0) Return an initial guess for the inverse Hessian.
 |  |  | 
    | scipy.optimize.optimize.OptimizeResult | 
        
          | minimize(self,
        fun,
        x_0,
        jac=None,
        **kwargs) Minimization of a function using the BFGS algorithm.
 |  |  | 
  
    | Inherited from object:__delattr__,__format__,__getattribute__,__hash__,__new__,__reduce__,__reduce_ex__,__repr__,__setattr__,__sizeof__,__str__,__subclasshook__ |