Manage an MECP step, which can be an iteration or a line search 
  iteration.
    |  | 
        
          | __init__(self,
        iteration,
        call_number,
        x_initial,
        method,
        perp_factor,
        para_factor,
        verbose,
        logger,
        bfgs_obj) Create an instance.
 |  |  | 
    |  | 
        
          | logInitialGeometry(self) Log the initial geometry.
 |  |  | 
    |  | 
        
          | logHessianEigVals(self) Log the Hessian eigenvalues.
 |  |  | 
    |  | 
        
          | logStepSize(self) Log the step size.
 |  |  | 
    |  |  | 
    |  | 
        
          | setInTemplates(self) Set the Jaguar input templates.
 |  |  | 
    | numpy.array or None |  | 
    |  | 
        
          | setEnergiesAndForces(self,
        prev_mecp_step=None) Set the energies and forces for the two states as well as well as the
      energy and forces to use for the MECP optimization.
 |  |  | 
    |  |  | 
    |  | 
        
          | setJobData(self,
        jobs,
        prev_mecp_step=None) Set job data.
 |  |  | 
    |  | 
        
          | logEnergyAndForces(self,
        header,
        energy,
        forces,
        max_force,
        rms_force,
        energy_header= 'Energy / Hartree',
        forces_header='Forces / Hartree/Ang.')Log energy and forces.
 |  |  | 
    | str |  | 
    |  | 
        
          | logSummaryHeader(self) Log the summary header.
 |  |  | 
    |  | 
        
          | logSummary(self) Log a summary.
 |  |  | 
    |  | 
        
          | logJobData(self) Log job data.
 |  |  | 
    |  | 
        
          | terminate(self,
        convergence_dict) Terminate the MECP optimization.
 |  |  | 
  
    | Inherited from object:__delattr__,__format__,__getattribute__,__hash__,__new__,__reduce__,__reduce_ex__,__repr__,__setattr__,__sizeof__,__str__,__subclasshook__ |