| Trees | Indices | Help | 
 | 
|---|
|  | 
Module for optimizing hydroxyl, thiol and water orientiations, Chi-flips of asparagine, glutamine and histidine, and protonation states of aspartic acid, glutamic acid, and histidine.
Usage: ProtAssign(st)
Copyright Schrodinger, LLC. All rights reserved.
Version: 0.14.0rc1
| 
 | |||
| PropKaException | |||
| ProtAssign | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| 
 | |||
| ALLOW_THREADS = 1 | |||
| BUFSIZE = 8192 | |||
| CLIP = 0hash(x) | |||
| DEFAULT_LOG_LEVEL = 1 | |||
| ERR_CALL = 3hash(x) | |||
| ERR_DEFAULT = 0hash(x) | |||
| ERR_DEFAULT2 = 521 | |||
| ERR_IGNORE = 0hash(x) | |||
| ERR_LOG = 5 | |||
| ERR_PRINT = 4 | |||
| ERR_RAISE = 2 | |||
| ERR_WARN = 1 | |||
| FLOATING_POINT_SUPPORT = 1 | |||
| FPE_DIVIDEBYZERO = 1 | |||
| FPE_INVALID = 8 | |||
| FPE_OVERFLOW = 2 | |||
| FPE_UNDERFLOW = 4 | |||
| False_ = False | |||
| Inf = inf | |||
| Infinity = inf | |||
| LOG_BASIC = 1 | |||
| LOG_DEBUG = 3hash(x) | |||
| LOG_EXTRA = 2 | |||
| LOG_FULL_DEBUG = 4 | |||
| LOG_NONE = 0hash(x) | |||
| LOG_SCORE_DEBUG = 5 | |||
| MAXDIMS = 32 | |||
| NAN = nan | |||
| NINF = -inf | |||
| NZERO = -0.0 | |||
| NaN = nan | |||
| PINF = inf | |||
| PZERO = 0.0 | |||
| RAISE = 2 | |||
| SHIFT_DIVIDEBYZERO = 0hash(x) | |||
| SHIFT_INVALID = 9 | |||
| SHIFT_OVERFLOW = 3hash(x) | |||
| SHIFT_UNDERFLOW = 6 | |||
| ScalarType =  | |||
| True_ = True | |||
| UFUNC_BUFSIZE_DEFAULT = 8192 | |||
| UFUNC_PYVALS_NAME =  | |||
| WRAP = 1 | |||
| __package__ =  | |||
| absolute = <ufunc 'absolute'> | |||
| add = <ufunc 'add'> | |||
| arccosh = <ufunc 'arccosh'> | |||
| arcsinh = <ufunc 'arcsinh'> | |||
| arctan = <ufunc 'arctan'> | |||
| arctan2 = <ufunc 'arctan2'> | |||
| bitwise_and = <ufunc 'bitwise_and'> | |||
| bitwise_not = <ufunc 'invert'> | |||
| bitwise_or = <ufunc 'bitwise_or'> | |||
| bitwise_xor = <ufunc 'bitwise_xor'> | |||
| c_ = <numpy.lib.index_tricks.CClass object at 0x2b32f83312d0> | |||
| cast = {<type 'numpy.void'>: <function <lambda> at 0x2b32f7ff8 | |||
| ceil = <ufunc 'ceil'> | |||
| conj = <ufunc 'conjugate'> | |||
| conjugate = <ufunc 'conjugate'> | |||
| copysign = <ufunc 'copysign'> | |||
| cos = <ufunc 'cos'> | |||
| cosh = <ufunc 'cosh'> | |||
| deg2rad = <ufunc 'deg2rad'> | |||
| degrees = <ufunc 'degrees'> | |||
| divide = <ufunc 'divide'> | |||
| e = 2.71828182846 | |||
| equal = <ufunc 'equal'> | |||
| euler_gamma = 0.577215664902 | |||
| exp = <ufunc 'exp'> | |||
| exp2 = <ufunc 'exp2'> | |||
| expm1 = <ufunc 'expm1'> | |||
| fabs = <ufunc 'fabs'> | |||
| floor = <ufunc 'floor'> | |||
| floor_divide = <ufunc 'floor_divide'> | |||
| fmax = <ufunc 'fmax'> | |||
| fmin = <ufunc 'fmin'> | |||
| fmod = <ufunc 'fmod'> | |||
| frexp = <ufunc 'frexp'> | |||
| greater = <ufunc 'greater'> | |||
| greater_equal = <ufunc 'greater_equal'> | |||
| hypot = <ufunc 'hypot'> | |||
| index_exp = <numpy.lib.index_tricks.IndexExpression object at  | |||
| inf = inf | |||
| infty = inf | |||
| invert = <ufunc 'invert'> | |||
| isfinite = <ufunc 'isfinite'> | |||
| isinf = <ufunc 'isinf'> | |||
| isnan = <ufunc 'isnan'> | |||
| label_color = 13 | |||
| ldexp = <ufunc 'ldexp'> | |||
| left_shift = <ufunc 'left_shift'> | |||
| less = <ufunc 'less'> | |||
| less_equal = <ufunc 'less_equal'> | |||
| little_endian = Truehash(x) | |||
| log1p = <ufunc 'log1p'> | |||
| logaddexp = <ufunc 'logaddexp'> | |||
| logaddexp2 = <ufunc 'logaddexp2'> | |||
| logical_and = <ufunc 'logical_and'> | |||
| logical_not = <ufunc 'logical_not'> | |||
| logical_or = <ufunc 'logical_or'> | |||
| logical_xor = <ufunc 'logical_xor'> | |||
| maximum = <ufunc 'maximum'> | |||
| mgrid = <numpy.lib.index_tricks.nd_grid object at 0x2b32f8331090> | |||
| minimum = <ufunc 'minimum'> | |||
| mod = <ufunc 'remainder'> | |||
| modf = <ufunc 'modf'> | |||
| multiply = <ufunc 'multiply'> | |||
| nan = nan | |||
| nbytes = {<type 'numpy.void'>: 0, <type 'numpy.uint64'>: 8, <t | |||
| negative = <ufunc 'negative'> | |||
| newaxis = Nonehash(x) | |||
| nextafter = <ufunc 'nextafter'> | |||
| not_equal = <ufunc 'not_equal'> | |||
| ogrid = <numpy.lib.index_tricks.nd_grid object at 0x2b32f8331190> | |||
| pH_high =  | |||
| pH_low =  | |||
| pH_neutral =  | |||
| pH_vlow =  | |||
| pi = 3.14159265359 | |||
| pka_property =  | |||
| r_ = <numpy.lib.index_tricks.RClass object at 0x2b32f8331210> | |||
| rad2deg = <ufunc 'rad2deg'> | |||
| radians = <ufunc 'radians'> | |||
| reciprocal = <ufunc 'reciprocal'> | |||
| remainder = <ufunc 'remainder'> | |||
| right_shift = <ufunc 'right_shift'> | |||
| rint = <ufunc 'rint'> | |||
| s_ = <numpy.lib.index_tricks.IndexExpression object at 0x2b32f | |||
| sctypeDict =  | |||
| sctypeNA =  | |||
| sctypes =  | |||
| sign = <ufunc 'sign'> | |||
| signbit = <ufunc 'signbit'> | |||
| sin = <ufunc 'sin'> | |||
| sinh = <ufunc 'sinh'> | |||
| spacing = <ufunc 'spacing'> | |||
| square = <ufunc 'square'> | |||
| subtract = <ufunc 'subtract'> | |||
| tan = <ufunc 'tan'> | |||
| tanh = <ufunc 'tanh'> | |||
| true_divide = <ufunc 'true_divide'> | |||
| trunc = <ufunc 'trunc'> | |||
| typeDict =  | |||
| typeNA =  | |||
| typecodes =  | |||
| 
 | |||
| 
 
Random values in a given shape.
Create an array of the given shape and propagate it with
random samples from a uniform distribution
over ``[0, 1)``.
Parameters
----------
d0, d1, ..., dn : int, optional
    The dimensions of the returned array, should all be positive.
    If no argument is given a single Python float is returned.
Returns
-------
out : ndarray, shape ``(d0, d1, ..., dn)``
    Random values.
See Also
--------
random
Notes
-----
This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
np.random.random_sample .
Examples
--------
>>> np.random.rand(3,2)
array([[ 0.14022471,  0.96360618],  #random
       [ 0.37601032,  0.25528411],  #random
       [ 0.49313049,  0.94909878]]) #random
 | 
| 
 
Return a sample (or samples) from the "standard normal" distribution.
If positive, int_like or int-convertible arguments are provided,
`randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.
This is a convenience function.  If you want an interface that takes a
tuple as the first argument, use `numpy.random.standard_normal` instead.
Parameters
----------
d0, d1, ..., dn : int, optional
    The dimensions of the returned array, should be all positive.
    If no argument is given a single Python float is returned.
Returns
-------
Z : ndarray or float
    A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
    the standard normal distribution, or a single such float if
    no parameters were supplied.
See Also
--------
random.standard_normal : Similar, but takes a tuple as its argument.
Notes
-----
For random samples from :math:`N(\mu, \sigma^2)`, use:
``sigma * np.random.randn(...) + mu``
Examples
--------
>>> np.random.randn()
2.1923875335537315 #random
Two-by-four array of samples from N(3, 6.25):
>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
       [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random
 | 
| 
 | |||
| ScalarType
 | 
| cast
 | 
| index_exp
 | 
| nbytes
 | 
| s_
 | 
| sctypeDict
 | 
| sctypeNA
 | 
| sctypes
 | 
| typeDict
 | 
| typeNA
 | 
| typecodes
 | 
| Trees | Indices | Help | 
 | 
|---|
| Generated by Epydoc 3.0.1 on Wed Aug 3 07:59:15 2016 | http://epydoc.sourceforge.net |