Manage an MECP step, which can be an iteration or a line search
iteration.
|
__init__(self,
iteration,
call_number,
x_initial,
method,
perp_factor,
para_factor,
verbose,
logger,
bfgs_obj)
Create an instance. |
|
|
|
logInitialGeometry(self)
Log the initial geometry. |
|
|
|
logHessianEigVals(self)
Log the Hessian eigenvalues. |
|
|
|
logStepSize(self)
Log the step size. |
|
|
|
|
|
setInTemplates(self)
Set the Jaguar input templates. |
|
|
numpy.array or None
|
|
|
setEnergiesAndForces(self,
prev_mecp_step=None)
Set the energies and forces for the two states as well as well as the
energy and forces to use for the MECP optimization. |
|
|
|
|
|
setJobData(self,
jobs,
prev_mecp_step=None)
Set job data. |
|
|
|
logEnergyAndForces(self,
header,
energy,
forces,
max_force,
rms_force,
energy_header=' Energy / Hartree ' ,
forces_header=' Forces / Hartree/Ang. ' )
Log energy and forces. |
|
|
str
|
|
|
logSummaryHeader(self)
Log the summary header. |
|
|
|
logSummary(self)
Log a summary. |
|
|
|
logJobData(self)
Log job data. |
|
|
|
terminate(self,
convergence_dict)
Terminate the MECP optimization. |
|
|
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|