Package schrodinger :: Package protein :: Module assignment
[hide private]
[frames] | no frames]

Module assignment

Module for optimizing hydroxyl, thiol and water orientiations, Chi-flips of asparagine, glutamine and histidine, and protonation states of aspartic acid, glutamic acid, and histidine.

Usage: ProtAssign(st)

Copyright Schrodinger, LLC. All rights reserved.


Version: 0.14.0rc1

Classes [hide private]
  PropKaException
  ProtAssign
Functions [hide private]
 
measure(ct, atom1=None, atom2=None, atom3=None, atom4=None, use_xtal=False, max_dist=10.0)
 
rand(d0, d1, dn, ...)
Random values in a given shape.
 
randn(d0, d1, dn, ...)
Return a sample (or samples) from the "standard normal" distribution.
 
report(message_level=1, message='')
Variables [hide private]
  ALLOW_THREADS = 1
  BUFSIZE = 8192
  CLIP = 0
hash(x)
  DEFAULT_LOG_LEVEL = 1
  ERR_CALL = 3
hash(x)
  ERR_DEFAULT = 0
hash(x)
  ERR_DEFAULT2 = 521
  ERR_IGNORE = 0
hash(x)
  ERR_LOG = 5
  ERR_PRINT = 4
  ERR_RAISE = 2
  ERR_WARN = 1
  FLOATING_POINT_SUPPORT = 1
  FPE_DIVIDEBYZERO = 1
  FPE_INVALID = 8
  FPE_OVERFLOW = 2
  FPE_UNDERFLOW = 4
  False_ = False
  Inf = inf
  Infinity = inf
  LOG_BASIC = 1
  LOG_DEBUG = 3
hash(x)
  LOG_EXTRA = 2
  LOG_FULL_DEBUG = 4
  LOG_NONE = 0
hash(x)
  LOG_SCORE_DEBUG = 5
  MAXDIMS = 32
  NAN = nan
  NINF = -inf
  NZERO = -0.0
  NaN = nan
  PINF = inf
  PZERO = 0.0
  RAISE = 2
  SHIFT_DIVIDEBYZERO = 0
hash(x)
  SHIFT_INVALID = 9
  SHIFT_OVERFLOW = 3
hash(x)
  SHIFT_UNDERFLOW = 6
  ScalarType = (<type 'int'>, <type 'float'>, <type 'complex'>, ...
  True_ = True
  UFUNC_BUFSIZE_DEFAULT = 8192
  UFUNC_PYVALS_NAME = 'UFUNC_PYVALS'
  WRAP = 1
  __package__ = 'schrodinger.protein'
  absolute = <ufunc 'absolute'>
  add = <ufunc 'add'>
  arccosh = <ufunc 'arccosh'>
  arcsinh = <ufunc 'arcsinh'>
  arctan = <ufunc 'arctan'>
  arctan2 = <ufunc 'arctan2'>
  bitwise_and = <ufunc 'bitwise_and'>
  bitwise_not = <ufunc 'invert'>
  bitwise_or = <ufunc 'bitwise_or'>
  bitwise_xor = <ufunc 'bitwise_xor'>
  c_ = <numpy.lib.index_tricks.CClass object at 0x7f597582b250>
  cast = {<type 'numpy.void'>: <function <lambda> at 0x7f5976590...
  ceil = <ufunc 'ceil'>
  conj = <ufunc 'conjugate'>
  conjugate = <ufunc 'conjugate'>
  copysign = <ufunc 'copysign'>
  cos = <ufunc 'cos'>
  cosh = <ufunc 'cosh'>
  deg2rad = <ufunc 'deg2rad'>
  degrees = <ufunc 'degrees'>
  divide = <ufunc 'divide'>
  e = 2.71828182846
  equal = <ufunc 'equal'>
  euler_gamma = 0.577215664902
  exp = <ufunc 'exp'>
  exp2 = <ufunc 'exp2'>
  expm1 = <ufunc 'expm1'>
  fabs = <ufunc 'fabs'>
  floor = <ufunc 'floor'>
  floor_divide = <ufunc 'floor_divide'>
  fmax = <ufunc 'fmax'>
  fmin = <ufunc 'fmin'>
  fmod = <ufunc 'fmod'>
  frexp = <ufunc 'frexp'>
  greater = <ufunc 'greater'>
  greater_equal = <ufunc 'greater_equal'>
  hypot = <ufunc 'hypot'>
  index_exp = <numpy.lib.index_tricks.IndexExpression object at ...
  inf = inf
  infty = inf
  invert = <ufunc 'invert'>
  isfinite = <ufunc 'isfinite'>
  isinf = <ufunc 'isinf'>
  isnan = <ufunc 'isnan'>
  label_color = 13
  ldexp = <ufunc 'ldexp'>
  left_shift = <ufunc 'left_shift'>
  less = <ufunc 'less'>
  less_equal = <ufunc 'less_equal'>
  little_endian = True
hash(x)
  log1p = <ufunc 'log1p'>
  logaddexp = <ufunc 'logaddexp'>
  logaddexp2 = <ufunc 'logaddexp2'>
  logical_and = <ufunc 'logical_and'>
  logical_not = <ufunc 'logical_not'>
  logical_or = <ufunc 'logical_or'>
  logical_xor = <ufunc 'logical_xor'>
  maximum = <ufunc 'maximum'>
  mgrid = <numpy.lib.index_tricks.nd_grid object at 0x7f5975823fd0>
  minimum = <ufunc 'minimum'>
  mod = <ufunc 'remainder'>
  modf = <ufunc 'modf'>
  multiply = <ufunc 'multiply'>
  nan = nan
  nbytes = {<type 'numpy.void'>: 0, <type 'numpy.uint64'>: 8, <t...
  negative = <ufunc 'negative'>
  newaxis = None
hash(x)
  nextafter = <ufunc 'nextafter'>
  not_equal = <ufunc 'not_equal'>
  ogrid = <numpy.lib.index_tricks.nd_grid object at 0x7f597582b110>
  pH_high = 'high'
  pH_low = 'low'
  pH_neutral = 'neutral'
  pH_vlow = 'very_low'
  pi = 3.14159265359
  pka_property = 'r_pa_PropKa_pKa'
  r_ = <numpy.lib.index_tricks.RClass object at 0x7f597582b190>
  rad2deg = <ufunc 'rad2deg'>
  radians = <ufunc 'radians'>
  reciprocal = <ufunc 'reciprocal'>
  remainder = <ufunc 'remainder'>
  right_shift = <ufunc 'right_shift'>
  rint = <ufunc 'rint'>
  s_ = <numpy.lib.index_tricks.IndexExpression object at 0x7f597...
  sctypeDict = {0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>,...
  sctypeNA = {'?': 'Bool', 'B': 'UInt8', 'Bool': <type 'numpy.bo...
  sctypes = {'complex': [<type 'numpy.complex64'>, <type 'numpy....
  sign = <ufunc 'sign'>
  signbit = <ufunc 'signbit'>
  sin = <ufunc 'sin'>
  sinh = <ufunc 'sinh'>
  spacing = <ufunc 'spacing'>
  square = <ufunc 'square'>
  subtract = <ufunc 'subtract'>
  tan = <ufunc 'tan'>
  tanh = <ufunc 'tanh'>
  true_divide = <ufunc 'true_divide'>
  trunc = <ufunc 'trunc'>
  typeDict = {0: <type 'numpy.bool_'>, 1: <type 'numpy.int8'>, 2...
  typeNA = {'?': 'Bool', 'B': 'UInt8', 'Bool': <type 'numpy.bool...
  typecodes = {'All': '?bhilqpBHILQPefdgFDGSUVOMm', 'AllFloat': ...
Function Details [hide private]

rand(d0, d1, dn, ...)

 
Random values in a given shape.

Create an array of the given shape and propagate it with
random samples from a uniform distribution
over ``[0, 1)``.

Parameters
----------
d0, d1, ..., dn : int, optional
    The dimensions of the returned array, should all be positive.
    If no argument is given a single Python float is returned.

Returns
-------
out : ndarray, shape ``(d0, d1, ..., dn)``
    Random values.

See Also
--------
random

Notes
-----
This is a convenience function. If you want an interface that
takes a shape-tuple as the first argument, refer to
np.random.random_sample .

Examples
--------
>>> np.random.rand(3,2)
array([[ 0.14022471,  0.96360618],  #random
       [ 0.37601032,  0.25528411],  #random
       [ 0.49313049,  0.94909878]]) #random

randn(d0, d1, dn, ...)

 
Return a sample (or samples) from the "standard normal" distribution.

If positive, int_like or int-convertible arguments are provided,
`randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
with random floats sampled from a univariate "normal" (Gaussian)
distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
floats, they are first converted to integers by truncation). A single
float randomly sampled from the distribution is returned if no
argument is provided.

This is a convenience function.  If you want an interface that takes a
tuple as the first argument, use `numpy.random.standard_normal` instead.

Parameters
----------
d0, d1, ..., dn : int, optional
    The dimensions of the returned array, should be all positive.
    If no argument is given a single Python float is returned.

Returns
-------
Z : ndarray or float
    A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
    the standard normal distribution, or a single such float if
    no parameters were supplied.

See Also
--------
random.standard_normal : Similar, but takes a tuple as its argument.

Notes
-----
For random samples from :math:`N(\mu, \sigma^2)`, use:

``sigma * np.random.randn(...) + mu``

Examples
--------
>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
       [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random


Variables Details [hide private]

ScalarType

Value:
(<type 'int'>,
 <type 'float'>,
 <type 'complex'>,
 <type 'long'>,
 <type 'bool'>,
 <type 'str'>,
 <type 'unicode'>,
 <type 'buffer'>,
...

cast

Value:
{<type 'numpy.void'>: <function <lambda> at 0x7f59765905f0>, <type 'nu\
mpy.uint64'>: <function <lambda> at 0x7f5976590668>, <type 'numpy.comp\
lex128'>: <function <lambda> at 0x7f59765906e0>, <type 'numpy.int64'>:\
 <function <lambda> at 0x7f5976590758>, <type 'numpy.float64'>: <funct\
ion <lambda> at 0x7f59765907d0>, <type 'numpy.unicode_'>: <function <l\
ambda> at 0x7f5976590848>, <type 'numpy.uint32'>: <function <lambda> a\
t 0x7f59765908c0>, <type 'numpy.complex64'>: <function <lambda> at 0x7\
f5976590938>, <type 'numpy.int32'>: <function <lambda> at 0x7f59765909\
...

index_exp

Value:
<numpy.lib.index_tricks.IndexExpression object at 0x7f597582b310>

nbytes

Value:
{<type 'numpy.void'>: 0, <type 'numpy.uint64'>: 8, <type 'numpy.comple\
x128'>: 16, <type 'numpy.int64'>: 8, <type 'numpy.float64'>: 8, <type \
'numpy.unicode_'>: 0, <type 'numpy.uint32'>: 4, <type 'numpy.complex64\
'>: 8, <type 'numpy.int32'>: 4, <type 'numpy.float32'>: 4, <type 'nump\
y.string_'>: 0, <type 'numpy.uint16'>: 2, <type 'numpy.timedelta64'>: \
8, <type 'numpy.int16'>: 2, <type 'numpy.float16'>: 2, <type 'numpy.bo\
ol_'>: 1, <type 'numpy.uint8'>: 1, <type 'numpy.datetime64'>: 8, <type\
 'numpy.int8'>: 1, <type 'numpy.uint64'>: 8, <type 'numpy.complex256'>\
...

s_

Value:
<numpy.lib.index_tricks.IndexExpression object at 0x7f597582b390>

sctypeDict

Value:
{0: <type 'numpy.bool_'>,
 1: <type 'numpy.int8'>,
 2: <type 'numpy.uint8'>,
 3: <type 'numpy.int16'>,
 4: <type 'numpy.uint16'>,
 5: <type 'numpy.int32'>,
 6: <type 'numpy.uint32'>,
 7: <type 'numpy.int64'>,
...

sctypeNA

Value:
{'?': 'Bool',
 'B': 'UInt8',
 'Bool': <type 'numpy.bool_'>,
 'Complex128': <type 'numpy.complex256'>,
 'Complex32': <type 'numpy.complex64'>,
 'Complex64': <type 'numpy.complex128'>,
 'D': 'Complex64',
 'Datetime64': <type 'numpy.datetime64'>,
...

sctypes

Value:
{'complex': [<type 'numpy.complex64'>,
             <type 'numpy.complex128'>,
             <type 'numpy.complex256'>],
 'float': [<type 'numpy.float16'>,
           <type 'numpy.float32'>,
           <type 'numpy.float64'>,
           <type 'numpy.float128'>],
 'int': [<type 'numpy.int8'>, <type 'numpy.int16'>, <type 'numpy.int32\
...

typeDict

Value:
{0: <type 'numpy.bool_'>,
 1: <type 'numpy.int8'>,
 2: <type 'numpy.uint8'>,
 3: <type 'numpy.int16'>,
 4: <type 'numpy.uint16'>,
 5: <type 'numpy.int32'>,
 6: <type 'numpy.uint32'>,
 7: <type 'numpy.int64'>,
...

typeNA

Value:
{'?': 'Bool',
 'B': 'UInt8',
 'Bool': <type 'numpy.bool_'>,
 'Complex128': <type 'numpy.complex256'>,
 'Complex32': <type 'numpy.complex64'>,
 'Complex64': <type 'numpy.complex128'>,
 'D': 'Complex64',
 'Datetime64': <type 'numpy.datetime64'>,
...

typecodes

Value:
{'All': '?bhilqpBHILQPefdgFDGSUVOMm',
 'AllFloat': 'efdgFDG',
 'AllInteger': 'bBhHiIlLqQpP',
 'Character': 'c',
 'Complex': 'FDG',
 'Datetime': 'Mm',
 'Float': 'efdg',
 'Integer': 'bhilqp',
...