Trees | Indices | Help |
|
---|
|
Module for optimizing hydroxyl, thiol and water orientiations, Chi-flips of asparagine, glutamine and histidine, and protonation states of aspartic acid, glutamic acid, and histidine.
Usage: ProtAssign(st)
Copyright Schrodinger, LLC. All rights reserved.
Version: 0.14.0rc1
|
|||
PropKaException | |||
ProtAssign |
|
|||
|
|||
|
|||
|
|||
|
|
|||
ALLOW_THREADS = 1
|
|||
BUFSIZE = 8192
|
|||
CLIP = 0 hash(x) |
|||
DEFAULT_LOG_LEVEL = 1
|
|||
ERR_CALL = 3 hash(x) |
|||
ERR_DEFAULT = 0 hash(x) |
|||
ERR_DEFAULT2 = 521
|
|||
ERR_IGNORE = 0 hash(x) |
|||
ERR_LOG = 5
|
|||
ERR_PRINT = 4
|
|||
ERR_RAISE = 2
|
|||
ERR_WARN = 1
|
|||
FLOATING_POINT_SUPPORT = 1
|
|||
FPE_DIVIDEBYZERO = 1
|
|||
FPE_INVALID = 8
|
|||
FPE_OVERFLOW = 2
|
|||
FPE_UNDERFLOW = 4
|
|||
False_ = False
|
|||
Inf = inf
|
|||
Infinity = inf
|
|||
LOG_BASIC = 1
|
|||
LOG_DEBUG = 3 hash(x) |
|||
LOG_EXTRA = 2
|
|||
LOG_FULL_DEBUG = 4
|
|||
LOG_NONE = 0 hash(x) |
|||
LOG_SCORE_DEBUG = 5
|
|||
MAXDIMS = 32
|
|||
NAN = nan
|
|||
NINF = -inf
|
|||
NZERO = -0.0
|
|||
NaN = nan
|
|||
PINF = inf
|
|||
PZERO = 0.0
|
|||
RAISE = 2
|
|||
SHIFT_DIVIDEBYZERO = 0 hash(x) |
|||
SHIFT_INVALID = 9
|
|||
SHIFT_OVERFLOW = 3 hash(x) |
|||
SHIFT_UNDERFLOW = 6
|
|||
ScalarType =
|
|||
True_ = True
|
|||
UFUNC_BUFSIZE_DEFAULT = 8192
|
|||
UFUNC_PYVALS_NAME =
|
|||
WRAP = 1
|
|||
__package__ =
|
|||
absolute = <ufunc 'absolute'>
|
|||
add = <ufunc 'add'>
|
|||
arccosh = <ufunc 'arccosh'>
|
|||
arcsinh = <ufunc 'arcsinh'>
|
|||
arctan = <ufunc 'arctan'>
|
|||
arctan2 = <ufunc 'arctan2'>
|
|||
bitwise_and = <ufunc 'bitwise_and'>
|
|||
bitwise_not = <ufunc 'invert'>
|
|||
bitwise_or = <ufunc 'bitwise_or'>
|
|||
bitwise_xor = <ufunc 'bitwise_xor'>
|
|||
c_ = <numpy.lib.index_tricks.CClass object at 0x7f597582b250>
|
|||
cast = {<type 'numpy.void'>: <function <lambda> at 0x7f5976590
|
|||
ceil = <ufunc 'ceil'>
|
|||
conj = <ufunc 'conjugate'>
|
|||
conjugate = <ufunc 'conjugate'>
|
|||
copysign = <ufunc 'copysign'>
|
|||
cos = <ufunc 'cos'>
|
|||
cosh = <ufunc 'cosh'>
|
|||
deg2rad = <ufunc 'deg2rad'>
|
|||
degrees = <ufunc 'degrees'>
|
|||
divide = <ufunc 'divide'>
|
|||
e = 2.71828182846
|
|||
equal = <ufunc 'equal'>
|
|||
euler_gamma = 0.577215664902
|
|||
exp = <ufunc 'exp'>
|
|||
exp2 = <ufunc 'exp2'>
|
|||
expm1 = <ufunc 'expm1'>
|
|||
fabs = <ufunc 'fabs'>
|
|||
floor = <ufunc 'floor'>
|
|||
floor_divide = <ufunc 'floor_divide'>
|
|||
fmax = <ufunc 'fmax'>
|
|||
fmin = <ufunc 'fmin'>
|
|||
fmod = <ufunc 'fmod'>
|
|||
frexp = <ufunc 'frexp'>
|
|||
greater = <ufunc 'greater'>
|
|||
greater_equal = <ufunc 'greater_equal'>
|
|||
hypot = <ufunc 'hypot'>
|
|||
index_exp = <numpy.lib.index_tricks.IndexExpression object at
|
|||
inf = inf
|
|||
infty = inf
|
|||
invert = <ufunc 'invert'>
|
|||
isfinite = <ufunc 'isfinite'>
|
|||
isinf = <ufunc 'isinf'>
|
|||
isnan = <ufunc 'isnan'>
|
|||
label_color = 13
|
|||
ldexp = <ufunc 'ldexp'>
|
|||
left_shift = <ufunc 'left_shift'>
|
|||
less = <ufunc 'less'>
|
|||
less_equal = <ufunc 'less_equal'>
|
|||
little_endian = True hash(x) |
|||
log1p = <ufunc 'log1p'>
|
|||
logaddexp = <ufunc 'logaddexp'>
|
|||
logaddexp2 = <ufunc 'logaddexp2'>
|
|||
logical_and = <ufunc 'logical_and'>
|
|||
logical_not = <ufunc 'logical_not'>
|
|||
logical_or = <ufunc 'logical_or'>
|
|||
logical_xor = <ufunc 'logical_xor'>
|
|||
maximum = <ufunc 'maximum'>
|
|||
mgrid = <numpy.lib.index_tricks.nd_grid object at 0x7f5975823fd0>
|
|||
minimum = <ufunc 'minimum'>
|
|||
mod = <ufunc 'remainder'>
|
|||
modf = <ufunc 'modf'>
|
|||
multiply = <ufunc 'multiply'>
|
|||
nan = nan
|
|||
nbytes = {<type 'numpy.void'>: 0, <type 'numpy.uint64'>: 8, <t
|
|||
negative = <ufunc 'negative'>
|
|||
newaxis = None hash(x) |
|||
nextafter = <ufunc 'nextafter'>
|
|||
not_equal = <ufunc 'not_equal'>
|
|||
ogrid = <numpy.lib.index_tricks.nd_grid object at 0x7f597582b110>
|
|||
pH_high =
|
|||
pH_low =
|
|||
pH_neutral =
|
|||
pH_vlow =
|
|||
pi = 3.14159265359
|
|||
pka_property =
|
|||
r_ = <numpy.lib.index_tricks.RClass object at 0x7f597582b190>
|
|||
rad2deg = <ufunc 'rad2deg'>
|
|||
radians = <ufunc 'radians'>
|
|||
reciprocal = <ufunc 'reciprocal'>
|
|||
remainder = <ufunc 'remainder'>
|
|||
right_shift = <ufunc 'right_shift'>
|
|||
rint = <ufunc 'rint'>
|
|||
s_ = <numpy.lib.index_tricks.IndexExpression object at 0x7f597
|
|||
sctypeDict =
|
|||
sctypeNA =
|
|||
sctypes =
|
|||
sign = <ufunc 'sign'>
|
|||
signbit = <ufunc 'signbit'>
|
|||
sin = <ufunc 'sin'>
|
|||
sinh = <ufunc 'sinh'>
|
|||
spacing = <ufunc 'spacing'>
|
|||
square = <ufunc 'square'>
|
|||
subtract = <ufunc 'subtract'>
|
|||
tan = <ufunc 'tan'>
|
|||
tanh = <ufunc 'tanh'>
|
|||
true_divide = <ufunc 'true_divide'>
|
|||
trunc = <ufunc 'trunc'>
|
|||
typeDict =
|
|||
typeNA =
|
|||
typecodes =
|
|
Random values in a given shape. Create an array of the given shape and propagate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Notes ----- This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to np.random.random_sample . Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random |
Return a sample (or samples) from the "standard normal" distribution. If positive, int_like or int-convertible arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1 (if any of the :math:`d_i` are floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided. This is a convenience function. If you want an interface that takes a tuple as the first argument, use `numpy.random.standard_normal` instead. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- random.standard_normal : Similar, but takes a tuple as its argument. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 #random Two-by-four array of samples from N(3, 6.25): >>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random |
|
ScalarType
|
cast
|
index_exp
|
nbytes
|
s_
|
sctypeDict
|
sctypeNA
|
sctypes
|
typeDict
|
typeNA
|
typecodes
|
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Wed Oct 26 00:59:30 2016 | http://epydoc.sourceforge.net |